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Abstract An analysis has been carried out to determine the heat-transfer characteristics for turbulent 
flow in circular tube with circumferentially varying boundary conditions of first and second kind. Fully 
developed flow and heat transfer is considered. Contrary to prior investigations of this problem, anisotropy 
of turbulent energy transport has been taken into account employing theoretical results for eddy 
diffusivity in the various directions from an analysis of Ramm and Johannsen which are shown to be 
in satisfactory agreement with recent experimental data. Results for heat transfer at both constant and 
varying botmdary conditions are presented over a wide range of Reynolds number (104 ~< Re <~ 106) 

and Prandtl number (0 ~< Pr <~ 100) and compared to empirical data. 

N O M E N C L A T U R E  

a, b, Fourier coefficients; 
Cr,, specific heat at constant pressure; 
E, diffusivity function, (1 +gt~/~); 
F, dimensionless wall heat flux variation about 

the mean; 
,l~ Fanning friction factor; 
g, dimensionless temperature difference func- 

tion; 
(7. wall temperature function; 
k, thermal conductivity; 
n, harmonic; 
Nu, Nusselt number: 
Pr, Prandtl number 
q, heat flux; 
r, radial coordinate; 
ro, tube radius: 
R, radial temperature function; 
Re, Reynolds number; 
t, dimensionless fully-developed fluid tempera- 

ture; above mixed mean, 

[ T(/,, o ) -  T,,] . k/qo . ro ; 
T, temperature; 
u, velocity; 
U, dimensionless velocity, u/um; 

+ 
y , dimensionless distance, fi'.v/(~w/p*)/v. 

Greek symbols 
~, thermal diffusivity, k /p* .  Cp; 
~:. eddy diffusivity; 
v, kinematic viscosity; 

*Dedicated to Professor h. Professor Dr. sc. techn. 
Romano Grcgorig on the occasion of his 65th birthday. 

p, dimensionless radial coordinate, r/ro; 

fi, dimensionless distance from wall, (1 - p ) ;  
p*, fluid density; 
r, shear stress; 
q), angular coordinate. 

Subscripts and superscripts 
anis, anisotropic; 
0, average; 
D, mass; 
D B, Dittus Boelter, cf. equation (30); 
H, heat; 
is, isotropic; 
m, mixed mean; 
me, molecular conduction; 
M, momentum; 
n, harmonic; 
r, radial direction; 
s, starting point index; 
w, wall; 
q0, circumferential direction; 
oQ, asymptotic (fully-developed); 
* prescribed wall temperature. 

I N T R O D U C T I O N  

ALTHOUGH the circular tube is the probably most 
common geometry used to study the basic problems of 
heat transfer to turbulent internal flows, only a very 
limited number of investigations has dealt thus far with 
the effect of circumferentially non-uniform thermal 
boundary conditions. As far as theoretical work is 
concerned, this situation may be due to the unavail- 
ability of pertinent experimental or theoretical data on 
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the thermal diffusivity in the circumferential direction. 
Prior analyses of turbulent heat transfer in a tube with 
circumferentially varying boundary conditions as of 
Reynolds [1] as well as of Sparrow and Lin [2] have 
thus been based on the key assumption that the 
diffusivities of heat in the radial and tangential 
directions are identical. Black and Sparrow [3, 4] who 
performed the only experimental investigation with a 
non-uniformly heated circular tube the present authors 
are aware of, also extended the Sparrow-Lin analysis 
to accommodate a (constant) ratio of tangential to 
radial eddy diffusivity different from unity. Results for 
the temperature fields obtained on this basis have been 
compared with the measured temperature profiles. 
From this comparison Black and Sparrow concluded 
that the eddy diffusivity ratio, aH~,/e/4,, may be well in 
excess of unity in the neighbourhood of the wall, where 
turbulent eddies have greater freedom for tangential 
motion than for radial motion, but is essentially unity 
at all other points in the flow. This conception of the 
transport process has been confirmed by results of a 
combined theoretical and experimental approach of 
Bobkov et al. [5] and of an analysis of Ramm and 
Johannsen [6] to evaluate diffusivities. Very recently, 
experimental results for heat and mass transfer by 
Quarmby and Quirk [-26] have strongly supported 
these previous findings. 

In this paper, thermal eddy diffusivity distributions 
which are different in both directions as well as the 
velocity profiles of the Ramm-Johannsen analysis are 
used to resolve the problem of turbulent heat transfer 
in a circular tube with circumferentially varying 
thermal boundary conditions. The results of the 
analysis show the effects of Reynolds number and 
Prandtl number as well as of anisotropic turbulent 
thermal diffusivity on heat transfer. The agreement 
with the only available experimental results, those of 
Black and Sparrow [3, 4], is found to be satisfactory. 
Although restricted to a particular simple case. the 
present analysis provides some general insight into the 
nature and magnitude of the effects of circumferentially 
nonuniform boundary conditions on turbulent heat 
transfer. 

ANALYSIS 

We consider a turbulent tube flow with fully 
established velocity and temperature fields in which 
there is a uniform heat-transfer rate per unit length but 
in which either the wall temperature or the wall heat 
flux may vary arbitrarily around the circumference. 
Neglecting viscous dissipation and assuming constant 
fluid properties, the governing differential equation for 
the fully developed fluid temperature may be written 
in dimensionless form as 

L(t) = 2U(p), (1) 
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where we denoted for brevity 

' E'" ia'PJ + ;)z' ? ~  ~ 1 '  (2) 

The thermal transport function E in the various 
directions is taken to be a function of the radial 
coordinatep only, since it is assumed that the turbulent 
energy transport is set up by the axisymmetric flow 
field and thus independent of the thermal boundary 
conditions. Though one might expect that the boundary 
conditions have an influence, no evidence of this effect 
can be drawn from the pertinent experimental data, 
since probably any differences which may have 
occurred due to different boundary conditions are 
concealed in their scatter. Thus the assumption of 
taking E = J(p) seemed appropriate in view of present 
knowledge. 

The solution of equation (1) must be such that the 
mixed mean of the dimensionless temperature 
difference t(p, rp) is zero, i.e. 

f l  f2, t(p,(o).U(p).p.dq~dp=O" (3) 
0 0 0  

Case 1: Prescribed wall heat flux 
If the wall heat flux is prescribed to vary in an 

arbitrary manner around the circumference as given by 
F(q~), the associated boundary condition may be 
formulated as 

(? t~  = l  + F(q0). (4) 
U P /  p = l  

We restrict ourselves to cases where the heat flux 
variation F(~o) may be expressed in terms of Fourier 
series and put 

F((p) = X F,(q~), (5) 
n - l  

where 

and 

F,(q9) = a,.  cos n o + b,. sin n O, (6) 

fo ~ F((p)d~p = (7) 0. 

Taking cognizance of equation (4) we choose to write 
the temperature difference t(p, ~p) as the following sum, 

t(p, (p) = go(P) + g(P, (P), (8) 

where go(P) is seen to be the temperature difference 
above mixed mean associated with the average heat 
flux qo, and g(p, (p) is the temperature difference above 
go(l) which takes care of the heat flux variation, 9o is the 
solution of the inhomogeneous ordinary differential 
equation 

L(go) = 2. U(p) (9a) 
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subject to boundary conditions 

90 (0 )=0  and gb( l )=  1. 

The appropriate condition (31 on equation (%) is 

~ o g O ( p ) . . d p  = O. (9c) U(p).p 

To find the governing equation for ,q(p, ~0) we introduce 
equation (8) into the energy equation (1). Taking 
account of the fact that go satisfies equations (9), it 
follows that g(p, q~) must obey 

L(g) = 0. (10) 

It is interesting to note that the velocity term does not 
appear in equation (10), and thus g is independent of the 
velocity field. We seek a solution for g in the form of a 
product 

g(p, o) = R(p). F(cp). (11) 

The function F(q~) is defined by equations (5) (7) and 
the solution for g may then be obtained in the form 

g(p, q~) = ~ R,(p). F,(~p) 
n - 1  

/ 

= ~ R,(p).(Gcosnq~+b, sinnq~). (12) 
n 1 

The radial temperature functions R,(p) must satisfy 

[ dR. ]  , E,,(p) R d EAp).p. l - n -  ,, = 0 (13a) 
dp [_ dp J p 

with boundary conditions 

R,,(0)=0 and R,~(1)= 1. (13b} 

The boundary value problems (9) and (13) have been 
solved applying a modified fifth order Runge Kutta 
integration procedure. Since equation (13a) has a 
singularity at p = 0 the integration was started near 
p = 0 and carried then to the wall. To start the Runge 
Kutta procedure we made use of the laminar solution 
at the starting point p~ near the tube center [1]: 

R.(p~) =//'/n 
and 

R'.(p~) = p~-1 

Because of the homogeneity of equation (13a), the radial 
temperature functions computed from the integration 
may be multiplied by any constant, and could therefore 
be normalized by 

c I/R'.{1) 

or, if the wall temperature around the periphery is 
prescribed (Case 2), by 

c * =  l/R*(1) 

to match the boundary conditions {13b) or (13c), 
respectively. 
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The computations were performed using sixty to 
(9b) seventy increments (the more the higher the Reynolds 

number) which have been distributed in exactly the 
same manner as has been proved favourable in the 
computational procedure for determining the velocity 
and thermal eddy diffusivity profiles. There the grid 
spacing was chosen such that the velocity differences 
between two grid points were approximately the same 
over the entire radius resulting in a very dense 
distributionin the wall near region where large velocity 
gradients exist. 

To check the convergence of solutions obtained by 
this integration procedure, first the laminar case has 
been treated where analytical solutions are available 
[1]. At leasL five-figure agreement was found for the 
first six harmonics. 

Then the velocity and eddy diffusivity distributions 
of the Ramm Johannsen analysis as of present yet 
unpublished status of development were introduced to 
calculate the turbulent temperature functions for the 
first harmonics. Using ten times as many increments 
it was found that solutions changed less than 0.1 per 
cent even at the highest Reynolds and Prandtl  numbers 
for which results are reported herein. Since largest 
error occurs under thcse conditions, accuracy of all 
results for turbulent heat transfer is to better than 
0.1 per cent. 

Having the solutions at hand, we denote the 
boundary values of the radial temperature functions 

Go - go(l)  (14) 

and 

G,,=R,(1), n =  1,2 . . . . .  (15) 

which depend parametrically on Reynolds and Prandtl  
numbers. The dimensionless circumferential wall 
temperature above mixed mean corresponding to an 
arbitrarily prescribed heat flux F(q~) may then be 
written as 

t (1,~oJ=Go+ Y, G,. (a,,cosmp+h, sinnqo). (16) 
n = l  

The local asymptotic Nusselt number is therefore 

2. q( q~)/qo 
Nu~ (~) = ,~ 

Go + ~ G.. F,,(~o) 
n - -  1 

(17) 

while the Nusselt number for uniform heat flux is simply 

Nu~ o = 2/C'o. (18) 

Case 2: Prescribed w,ll temperature 
If the wall temperature is prescribed to vary 

arbitrarily around the circumference, it may now be 
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formulated according to previous analysis as 

t(1, ~o) = go(1)+g*(l, ¢p) 

= Go + Z R*(1). F,*(~p) 
n = l  

where 

F,*(q0 = a* cos nrp + b* sin rap. 
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TURBULENT THERMAL DIFFUSIVITY 

For solving the differential equations (9) and (13) 
information on turbulent properties of the flow is 

(19) needed. The temperature difference above mixed mean, 
go(P), associated with the average heat flux qo may be 
evaluated as the turbulent velocity profile U(p) and the 
distribution of thermal diffusivity in the radial direc- 

(6a) tion, e, Hr(p), are known. In the radial temperature 
functions R,(p) only the thermal eddy diffusivity but 
for both the radial and circumferential direction is 
involved. 

All this input information has been taken directly 
from the analysis of Ramm and Johannsen to predict 
momentum and heat transfer in fully developed 

(20) turbulent channel flow [6, 7]. This theoretical approach 
falls into the category of phenomenological turbulence- 
model approaches or may be considered as a "zero- 
equation statistical turbulence model". It is based on 
the principal ideas of Buleev's model of turbulent 
transfer in three-dimensional fluid flow [8, 9] which 
permits the determination of all the components of the 
turbulent shear stress tensor as well as the turbulent 
heat fluxes independently of each other. However, 
application of Buleev's model to different channel 
geometries for predicting fluid flow and heat transfer 
has shown that results obtained become very unsatis- 
factory in view of both physical reasoning and experi- 
mental evidence as limits of geometric parameters are 

(21) approached (i.e. for example for annular flow, if radius 
ratio approaches zero). This wrong behavior of the 
solutions which is most obvious if the turbulent 
transport properties are considered, can only be 

(22) attributed to severe deficiencies of the model. Thus 
Ramm and Johannsen carefully reviewed the assump- 
tions of Buleev's model as well as the derivation of the 
calculational method which resulted in essential 
improvements and extensions of the original approach 
which are described in some detail in [37]. The im- 
proved method has been applied [o predict turbulent 
flow and heat transfer in smooth channels of uniform 

(23) (circular) and non-uniform cross section [6,7,13, 28, 37]. 
Preliminary results obtained for velocity profiles and 

eddy diffusivities in plane, circular, and concentric 
(24) annular ducts showed very satisfactory agreement with 

the available experimental data [6]. In the present 
paper, however, results of the latest state of develop- 
ment of the method have been used. This is essentially 
identical to that described in [7], however, the effect of 
dissipation, which previously has been assumed 
constant, has now been introduced to depend strongly 
both on position in the flow channel and Reynolds 
number in accordance with empirical evidence. This 
change has been proved rather important mainly in 
view of extending the applicability of the method to 
medium and high Prandtl number heat transfer. 

The relations (5) and (7) hold for F,* as well. 
The radial temperature functions R*(p) appearing 

in the formulation of the local fluid temperature 
corresponding to a prescribed wall temperature, 

t(p, ~p) = go(P) + ~ R *(p) , F,*( q~), 
n = l  

must again satisfy equation (13a) but with the boundary 
conditions 

R*(0)=0  and R*(1 )= I .  (13c) 

The numerical solution of equation (13a) with (13c) may 
be performed as described before. 

The local heat flux around the periphery of the tube, 
q(9) is now obtained differentiating the temperature as 
of equation (20) with respect to p at the tube wall. 
Normalizing q(q~) by the average wall heat flux, 

q0 = \ d p / o =  1, 

one obtains 

q, _2 : l +  
qo , = 1 \d--P/e= 1 " V,*(~0). 

At the tube wall (p = 1), the solutions for both cases of 
circumferentially varying boundary conditions are 
closely related to each other since 

and 

dR*']  _ 1 
G-p/~=1 U.(1)' 

F~* = G.  R,(1). 

Thus using the relation (23), the wall heat flux may be 
immediately obtained from equation (22) if Case 1 has 
been solved previously. Vice versa, if the heat flux is 
prescribed and (dR*/dp)p= 1 is available having solved 
equation (13a) for R* with boundary conditions (13c), 
the circumferential wall temperature variation may be 
found from equation (16) applying equations (15) and 
(23). In practice, the first way is preferred because the 
radial temperature functions as obtained from equation 
(13a) are more accurate than their derivatives. 
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FiG. 1. Typical distributions of turbulent 
diffusivities of heat in the radial and cir- 
cumferential directions for turbulent flow in a 

circular tube. 
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FIG. 2. Radial eddy diffusivity of heat vs relative tube radius. 

~:,UaH,., as shown in Fig. 3 versus wall distance for 
various Reynolds numbers, exhibits a sharp maximum 
in the region close to the wall. It decreases to a value 
of unity as the center of the tube is approached.-~ This 
principal behavior has also been suggested by 
turbulence measurements (Laufer [10], Lawn and 
Elliott [11] and others) and the attempts of Black and 
Sparrow [3, 4] and Quarmby [12] who tried different 

In the context of the present paper, results for the 
eddy diffusivity of heat are of main interest. As 
experimental data indicate, an has been found to be a 
function of the Reynolds number, the Prandtl number, so 
and the position as well as the direction in the channel. 
Typical distributions of ~ in both the radial and 
circumferential direction are shown in Fig. 1 for a ~0 
Reynolds number of 30000. The most interesting 
finding is that the diffusivity in the tangential direction, cHr 
eH,~, varies appreciably almost across the entire flow 30 

section. Only at the center of the tube eu is independent 
of direction for reason of symmetry.'~ 

Predictions for em are compared to recent measure- 
ments of Quarmby and Quirk [26] and previous 20 
experimental results of Sleicher [16] in Fig. 2. It can 
be seen that the agreement is satisfactory. 

The anisotropy of eddy transport is a strong function 10 
of the position in the channel. The predicted ratio 

fSince in the present ealculational method the turbulence 
properties at the center position of the tube are determined 
by integration procedures over the surrounding neighbour- 
hood the ratio does not approach exactly the expected 
value of 1.0 at point p = 0 but a slightly greater one in the 
order of magnitude of 1.03 to 1.05. 
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FIG. 3. Ratio of eddy diffusivity for heat in the tangential 
direction to that in radial direction vs relative wall distance. 
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assumptions on the radial variation of the eddy 
diffusivity ratio to bring theory and experiment into 
agreement. The only direct results which the present 
predictions may be compared with seem to be those 
published by Bobkov e t  al. [5] and, very recently, by 
Quarmby and Quirk [26]. 

The approach by Bobkov e t  al. is a combined 
theoretical and experimental one, because it involves 
an experimental investigation of the statistical 
characteristics of temperature fluctuations and a 
subsequent theoretical analysis involving the theory of 
homogeneous turbulent diffusion for limited regions of 
the flow. Their r,o/~w-results for the circular tube 
are presented in graphical form as data points which 
also have been approximated by the following 
equation: 

~:H~ 0"2 
- 1 + . . . .  . (25)  

c/~,. 1 .02  - p 
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Reynolds number as far as the wall near region is 
concerned. This effect, however, seems to fall well within 
the limits of experimental uncertainty and is thus not 
evident in the measurements. 

Considering the average values of the ~m,/em.-ratio 
as effected by variations in Reynolds number and 
Prandtl number (Fig. 3), it is seen that anisotropy 
increases slightly with increasing both R e  and P r .  The 
effect of Prandtl number changes is less important and 
only noticeable at low Prandtl numbers. 

Typical distributions of the diffusivity function E in 
both directions as used in the calculations are shown 
in Fig. 5. It may be noted that the local variations of 
E increase and become the more concentrated in the 
wall near region the higher both R e  and Pr .  

It may be noted that both presentations are 
independent of Reynolds number as well as Prandtl 
number, though the authors state a weak dependence 
of the diffusivity ratio on R e .  The present predictions 
have been compared with those results in [27], and 
excellent agreement has been found in the ranges of 
p ~< 0"95 and Re <105. 

The experimental results for heat transfer of 
Quarmby and Quirk [26] were obtained using an 
electrically heated wall patch source in a plain tube 
under conditions of fully developed turbulent flow. 
They are compared together with data for mass transfer 
reported by the same authors to present predictions 
in Fig. 4. In view of the scatter of the data, the agree- 
ment is very satisfactory. As in Fig. 3, predictions 
indicate an increase of the diffusivity ratio with 
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FIG. 5. Diffusivity function E in the radial and tangential 
directions vs relative tube radius for different Reynolds 

numbers and Prandtl numbers. 
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FIG. 4. Ratio of mass and heat eddy diffusivities in the 
tangential directions to that in radial direction vs relative 

radius. 

It may be pointed out that in the previous analyses 
of the effect of circumferentially varying boundary 
conditions [1-4, 14] not only the anisotropy of E has 
been neglected but also a more simplified approach for 
its evaluation has been applied. E~ has been rewritten 
a s  

~Mr ~Hr 
E r = 1 d- - -  - . P r ,  (26) 

V gMr 

and separate assumptions for the eddy diffusivity of 
momentum, eMr/v,  and the diffusivity ratio, cur/cur, 
have been made. In principle, there is obviously nothing 
wrong with this procedure as long as eur/eMr is also 
taken as a function of position and is consistent with 
the relation for eMf fv .  However, in these analyses 
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g, Hr/eMr has throughout been represented by the ratio 
of the local averages and thus taken constant. Sparrow 
and Lin [2] as well as Black and Sparrow [3, 4] 
assumed the ratio to he unity for Pr = 0.7 and 10, 
while Reynolds [1], and recently, Rapier [14] used the 
Jenkins' correlation [15] multiplied by a factor of 1"15 
for Pr ~ 0.7 and a constant value of 1.15 for Pr >~ 3. 

Figure 6 compares the local distribution of e,n/eM~ 
as obtained from the Ramm-Johannsen analysis with 
experimental results of Sleicher [16], KjellstriSm [17] 
and Quarmby and Quirk [26] for air. Both theory 
and experimenthl data indicate that the eddy diffusivity 
ratio, besides being dependent on Reynolds number 
and Prandtl number, is also a function of the position 
in the channel. The variation of em/~,M~ is most 
pronounced in the wall near region and extends more 
to thecenter as Reynolds and Prandtl numbers decrease. 
It seems worth mentioning that for Pr <~ 0"5 the ratio 
increases near the walt with wall distance while the 
opposite is true for higher Prandtl numbers. This 
predicted behavior gains some support from experi- 
mental results. However, especially in the low Prandtl 
number range, no clear impression regarding the true 
behavior emerges due to the large scatter of data. The 
general agreement with Sleicher's and Kjellstr6m's 
results for air seems to be good in view of the 
experimental uncertainties. 

The average values of the diffusivity ratio in the radial 
direction as used in the analyses of Reynolds [1] and 
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FIG. 6. Ratio of radial heat diffusivity to that of 
momentum vs relative radius. 
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FIG. 7. Average ratio of radial heat diffusivity to 
that of momentum vs Reynolds number. 

Rapier [14] are compared to present predictions in 
Fig. 7. For Pr = 0"7, the agreement between both 
predictions as well as with the experimental data of 
Kjellstr6m is not bad, however, the effect of Reynolds 
number in Jenkins' correlation is just vice versa to that 
observed in the experimental data (Fig. 6) and present 
theoretical results. Though the majority of data seems 
to indicate that, at Pr = 0.7, the diffusivity ratio 
decreases slightly with increasing Reynolds number 
[17], it can be stated that the situation is far from 
being clear and also other theories exist which agree 
with the trends of Jenkins' prediction (e.g. Tyldesley 
and Silver [18]). In the low Prandtl number range, 
remarkable discrepencies between results of present 
theory and the Reynolds/Rapier assumption exist. 
Since, for a Prandtl number of 0.007, the present pre- 
dictions are in excellent agreement with recent 
experimental data [19, 20, 21] as demonstrated in 
[6, 28, 37], it is felt that Jenkins' relation can be 
considered to be incorrect at Prandtl numbers less 
than say 0"1. 

D I S C U S S I O N  A N D  C O M P A R I S O N  O F  R E S U L T S  

Constant wall heat flux 
To check the validity of present results, the 

asymptotic Nusselt number, Nu~o, for a uniform axial 
heat flux distribution as calculated from equation (18) 
has been compared with empirically well-established 
correlations and single experimental results for fully 
developed turbulent heat transfer in a circular tube 
(Figs. 11-13). 

H M T  Vol. 17. No. 9 D 
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FIG. 8. Typical radial temperature functions for the case of 
prescribed wall heat flux. 
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FIG. 9. Typical radial temperature functions for the case of 
prescribed wall temperature. 

In Fig. 11, emphasis is devoted to the low Prandtl 
number range. Subbotin et al. [22] correlated experi- 
mental data on measured turbulent heat-transfer 
coefficients with flow of various fluids and found the 
following formula: 

Nuo~o = (Nu~o0),,c+0-0155 x Re T M  x Pr", (27) 

where 

(Nuo~o)mc = 7 .24-  9"5/log Re, 

and 

n = 0 ' 58 -0 ' 18 .  tanh(0"8 x logPr). 

Equation (27) is claimed to represent a large number of 
data in the ranges of 0 < Pr ~< 5 and 10 4 ~ Re ~< 5 x l0 s 
with a scatter of +12 per cent, if correlated in 
coordinates Nu~o vs Re°82Pr ". It takes no account of 
the temperature dependence of the fluids physical 
properties. For Pr <~ 0'7, the agreement of relation (27) 
with present results appears to be excellent except at 
very low Prandtl and Reynolds number, where 
empirical results still are somewhat in doubt and 
contradictory. However, the value predicted for the 
limiting Nusselt number ( P r ~ O )  at Re = 104 of 
approximately 6 lies well between other empirical and 
theoretical correlations which indicate values from 
about 5 to 7. For Pr >>. 0'7, comparison is also made 
to a simple relation of the form 

Nuo~o = C Re m, (28) 

where however, the parameters C and m are taken as 
function of Prandtl number [23]. For  isothermal 
conditions, numerical values for C and m have been 
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FIG. l l. Results and comparisons for fully-developed 
heat transfer at constant wall heat flux, PR ~< 10. 

determined by Hufschmidt et al. [23] for 0"7 ~ Pr  <-N 10 
and 10 + ~< Re ~< 5 x 105 adjusting graphically equation 
(28) to the theoretical relation of Petukhov and Popov 
[25], 

(,/'/2) x Re x Pr  

Nu:+o = 1"07+ 12"7 x ~/[(j72) × (Pr 213- 1)]' (29) 

which they found to agree best with both their own 
measurements and those of Allen and Eckert [24]. 
Very recently, Webb [29] also claimed that relation 
(29) provides a very good correlation of existing data 
for 0-7 < Pr  < 50 and agrees with the smoothed re- 
suits of four investigators within _+ 15 per cent. Thus 
assigning to relation (29) and its simplified form (28) 
a sound degree of reliability, present analysis seems to 
slightly overpredict Nusselt number at Pr = 3 and 10 
in the high Reynolds number range. 

A more detailed comparison of present results with 
appropriate analytical and empirically based predic- 
tions for the range of 0.7 ~< Pr <~ 75 is made in Figs. 
12 and 13. The ordinates are normalized by Nusselt 
numbers computed from the Dittus Boelter cor- 
relation: 

NUD B = 0"023 R e  ° s  Pr  °'~. (30) 
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Inspection of Figs. 12 and 13 reveals that, at all Prandtl 
numbers which a comparison is made for the deviations 
between present theory and experimental results do not 
exceed 10 per cent and are generally much less.$ Best 
agreement is obtained at the high Prandtl  numbers 
(Fig. 13); neglecting the low Reynolds number test of 
Malina and Sparrow [35] at Pr = 48 (upper graph of 
Fig. 13), deviations between both the empirical results 
[35] and the realtion of Petukhov and Popov [25] are 
always less than 4 per cent for 104 ~< Re ~< 7 x 104. All 
results including those from present authors also 
indicate, that for Pr = 8 the dependence of the Nusselt 
number upon Reynolds number exceeds the power of 
0.8 and thus the Dittus Boelter equation (30) tends to 
give the more conservative results the higher the 
Reynolds number. This finding has also been cited by 
previous investigators [23, 35]. 

The foregoing comparisons are felt to demonstrate 
to a sufficient extent that the theoretical method of 
Ramm and Johannsen may be used over a wide range 
of Prandtl  number (0 ~< Pr <<, 100) to predict turbulent 
heat transfer in a circular tube with very satisfactory 
accuracy. 

Varying boundary conditions 
The properties of the heat-transfer solutions obtained 

for a circumferentially varying heat flux probably may 
be discussed most conveniently in terms of the ratio 
G,/Go (n >1 1), which in a sense is a measure of the 
relative importance of the higher harmonics and the 
average. Consider, for instance, the case of a tube 
heated with a cosinusoidally varying heat flux 
distribution around the periphery of amplitude a, 

q(~P) 
- 1 +a , . co s  n~o. (31) 

qo 

Using equation (16), the dimensionless local wall 
temperature difference is found to be 

t(1, q)) = Go + a,.  G,. cos nq~ 

G, 
= Go.(l+a,.G~o.cosn(p)" (32) 

If the average Nusselt number is used to estimate the 
circumferential wall temperature variation due to the 
varying heat flux as of equation (31), it immediately 
follows from equation (32) that the amplitude of the 
temperature variation is identical to that of the heat 
flux, Thus, for each harmonic of the heat flux variation, 
the ratio G,/Go describes the increase or decrease of 
the wall temperature amplitude relative to that one 
would obtain if the average heat-transfer coefficient is 
employed. 

?The results of Hartnett's experiments for Pr = 8 have not 
been taken into account, for they were not extrapolated to 
the constant-property condition. 

D. G:kR'rNER, K. JOHANNSEN and H. RAMM 

In Figs. 14-16, the ratio G,/Go has been plotted for 
the first, third and sixth harmonic, respectively. The 
figures exhibit quite a number of interesting features. 
It should first be noted that the ratio of G,/Go for pure 
molecular conduction (Pr = 0) proves to become the 
limiting value as the contribution of turbulent diffusion 
to energy transfer decreases with decreasing Reynolds 
and Prandtl  numbers. The molecular condition curve 
also clearly tends to approach the corresponding slug 
flow ratio as, with Re -* oo, the turbulent velocity pro- 
file becomes flatter and flatter. It has to be pointed out, 
however, that the curves for Pr = 0 are the upper limit 
up to the third harmonic and the lower limit for the 
higher harmonics (n/> 4) of the heat flux variation. A 
conclusive physical interpretation of this behavior 
could not be found by the authors. With respect to 
practical applications, the most important finding is 
that most attention has to be devoted to the wall 
temperature variation due to the first harmonic of the 
heat flux. For this case, the ratio is remarkably 
greater than 1, varying from about 3.1 for a fluid of 
Pr = 0"007 (sodium) at Re ~ 60000 to about 1,15 for 
a fluid of Pr = 8 (water) at same Reynolds number. 
It has to be kept in mind, however, that the ratio 
GI/Go relates the maximum wall temperature variation 
above average to the average temperature drop due to 
the (averaged) constant heat flux. Thus, it cannot be 
concluded eo ipso from these figures for which fluids 
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FIG. 15. Ratio of third harmonic of temperature 
function at the wall to average as a function of 

Reynolds number and Prandtl number. 
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FIG. 16. Ratio of sixth harmonic of temperature 
function at the wall to average as a function of 

Reynolds number and Prandtl number. 

the effect of circumferentially varying wall heat flux is 
more important. The resultant absolute wall tempera- 
ture variation for a given heat flux amplitude may be 
of equal order of magnitude for a liquid-metal or water 
cooled heat transfer unit, since the values of the average 
temperature drop usually employed and the cor- 
responding ratio G1/Go behave contrarily. 

Another interesting conclusion that may be drawn 
from Figs. 14 16 is related to the applicability of heat- 
transfer calculations assuming slug flow to estimate 
liquid-metal heat transfer. It is often believed that slug 
flow analysis yields the correct temperature fields for 
turbulent liquid-metal heat transfer at least for those 
combinations of Prandtl and Reynolds number at 
which the average Nusselt numbers agree with the slug 
flow result. Generally, this is not the case. since the 
ratios G,/Go for slug flow do not have any points of 
intersection with the corresponding curves for 
turbulent liquid-metal heat transfer or do not intersect 
at the appropriate combination of Re and Pr. By slug 
flow analysis, the temperature variations are usually 
overestimated at the low harmonics and under- 
estimated at the high harmonics. 

The deviations of present results from those obtained 
by Reynolds [1] as well as Sutherland and Kays [36] 
are due to the different predictions used for velocity 
and eddy diffusivity distributions. This subject has been 
discussed in a previous section of this paper. It may be 
noted, however, that significant differences can be 
exclusively attributed to anisotropic turbulent energy 
diffusion which has been introduced in the present 
analysis, The effect of anisotropic eddy transport on 
first harmonic of the temperature function at the wall, 
G1, is shown in Fig. 17. As expected, the increased 
turbulent transfer in the circumferential direction 
reduces the temperature function G1. The reduction is 
the more pronounced the higher the contribution of 
turbulent transport to the total energy transport, i.e. it 
increases with both Reynolds and Prandtl numbers. 

In Fig. 18, present theoretical results are compared 
with experimental data of Black and Sparrow [3, 4] 
for a tube with circumferentially varying boundary 
conditions. Temperature distributions at the inner tube 
surface have been taken from Black's thesis and used 
as input data to calculate corresponding wall heat flux 
and Nusselt number. The theoretical results of Sparrow 
and Lin [2] and Reynolds as taken from Black [3] 
are also plotted in Fig. 18. In general, all analyses 
predict Nusselt number variations which are more 
pronounced than those evaluated from the measure- 
ments. Present results seem to be closest to Black's 
data and, in view of the errors involved in the 
experiment as well as data reduction [14], the agree- 
ment is very satisfactory. The slightly lower level of 
present Nusselt number curves exhibits a difference in 
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FIG. 17. Effect of anisotropy of turbulent energy 
transfer on first harmonic of temperature function 

at the wall. 

average Nusselt numbers which previously has been 
shown in Fig. 12; calculated values are by about 4 per 
cent less than those measured by Black. 

It seems rather surprising that Reynolds prediction 
deviates this much from both other predictions and 
measurements. From comparing with the Sparrow-Lin 

analysis, Black and Sparrow [3, 4] finally assumed 
that this could be due to the different turbulent 
transport model employed by Reynolds. It has been 
experienced by the authors, however, that the 
differences in eddy diffusivity distributions are by far 
too small to cause the rather large deviations of final 
results. The correct explanation may easily be found 
as soon as one recognizes that different problems are 
solved by Sparrow-Lin and Reynolds. Sparrow and 
Lin [2] considered the problem of prescribed circum- 
ferentially varying wall temperature (Case 2 of present 
paper) whereas Reynolds [1] developed a solution for 
the case of prescribed circumferentially varying wall 
heat flux. Obviously, Black and Sparrow introduced 
the measured circumferential temperature distributions 
into the Sparrow Lin analysis to calculate the cor- 
responding heat flux distribution and, by that, the 
Nusselt number variation. To compare with the 
Reynolds analysis, they took the heat flux distribution 
from Black's measurements to evaluate the correspond- 
ing temperature distribution (and Nusselt number). 
Even if identical velocity and eddy diffusivity 
distributions would have been used in both analyses, 
the deviations between the resultant temperature 
distributions as obtained by the latter procedure and 
that one used as boundary condition (Black's data) in 
the Sparrow-Lin analysis m u s t  be remarkably more 
pronounced than those between the corresponding wall 
heat fluxes. The reason becomes obvious by considering 
either Reynolds' or present results: A given heat flux 
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Table 1. Circum~rentialtemperature functions G, = 2/Nu~,o 

Re 
Pr n 104 3 × 104 105 3 × lO s 106 

0 0 0"3231 0'3034 0-2917 0"2848 0.2807 
1 1-0000 1.0000 1'0000 1.0000 1-0000 
2 0-5000 0-5000 0.5000 0.5000 0.5000 
3 0.3333 0.3333 0.3333 0.3333 0.3333 
4 0.2500 0.2500 0.2500 0.2500 0.2500 
5 0.2000 0.2000 0.2000 0.2000 0.2000 
6 0.1667 0.1667 0.1667 0.1667 0.1667 

0.001 0 0.3230 0.3022 0.2834 0.2481 0.1751 
1 0.9989 0.9937 0.9561 0.8059 0.4853 
2 0.4995 0.4973 0.4817 0,4171 0.2699 
3 0.3331 0.3319 0,3232 0,286l 0.1950 
4 0.2498 0.2491 0,2436 0,2192 0.1553 
5 0-1999 0.1994 0,1956 0,1783 0.1301 
6 0.1666 0.1662 0,1635 0,1505 0.1125 

0.003 0 0-3217 0.2958 0.2527 0.1817 0-1019 
1 0.9929 0.9613 0.8005 0.5042 0.2300 
2 0.4970 0.4837 0.4147 0.2792 0.1391 
3 0.3316 0.3243 0,2848 0,2013 0.1064 
4 0.2489 0.2442 0.2184 0.1600 0-08838 
5 0-1993 0.1960 0-1777 0,1339 0-07649 
6 0-1661 0.1637 0,1501 0,1157 0.06791 

0.01 0 0.3125 0.2605 0,1730 0,09882 0.04638 
1 0.9499 0.7915 0,4567 0.2185 0.08667 
2 0.4787 0.4104 0,2562 0.1333 0.05694 
3 0.3215 0.2822 0,1866 0.1025 0.04596 
4 0.2425 0-2167 0,1495 0.08545 0-03969 
5 0.1948 0.1765 0.1258 0.07420 0.03543 
6 0-1629 01492 0-1092 0.06606 0.03227 

0.03 0 0-2743 0-1830 0.09598 0.04775 0-02032 
1 0.7794 0.4705 0.2055 0-08883 0.03355 
2 0.4062 0-2638 0.1266 0-05857 0.02342 
3 0.2806 0.1923 0-09811 0.04738 0-01964 
4 0.2162 0.1543 0.08226 0.04099 0.01744 
5 0.1765 0.1300 0.07179 0-03664 0-01592 
6 0.1495 0-1130 0.06419 0-03342 0.01478 

0-7 0 0.06967 0.02973 0.01147 0 . 0 0 4 7 6 1  0.001774 
1 0.1116 0.04416 0.01610 0-006443 0.002317 
2 0.08165 0 . 0 3 3 4 1  0-01252 0-005116 0-001879 
3 0.07029 0.02943 0.01118 0.004617 0-001714 
4 0.06352 0.02711 0.01040 0.004325 0-001616 
5 0-05869 0.02550 0.009861 0.004122 0.001548 
6 0.05494 0.02427 0-009452 0-003967 0.001496 

3 0 0.03387 0.01344 0.004864 0.001950 0-0006977 
1 0.04398 0,01681 0.005940 0.002343 0.0008244 
2 0.03684 0,01429 0 - 0 0 5 1 0 1  0.002032 0.0007221 
3 0.03407 0,01334 0.004787 0.001916 0.0006835 
4 0-03236 0,01279 0.004604 0.001847 0-0006608 
5 0.03110 0,01240 0.004477 0.001800 0.0006449 
6 0.03008 0.01209 0.004380 0.001763 0.0006327 

10 0 0.02020 0.007778 0.002727 0.001084 0.0003774 
1 0.02328 0-008790 0.003048 0.001204 0.0004154 
2 002112 0 - 0 0 8 0 3 1  0-002796 0 . 0 0 1 1 1 1  0.0003847 
3 0.02028 0.007747 0.002702 0-001076 0.0003731 
4 0.01975 0.007579 0.002646 0.001055 0.0003663 
5 001935 0.007460 0-002608 0.001041 0.0003615 
6 0.01902 0.007366 0.002579 0.001030 0-0003579 
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Table 1. (cont.) 

Re 
Pr n 104 3 x 104 105 3 X 1 0  s 1 0  6 

30 0 0.01344 0-005109 0.001738 0.0007026 0.0002368 
1 0.01447 0.005442 0.001843 0.0007438 0.0002495 
2 0.01375 0.005188 0.001759 0.0007128 0.0002393 
3 0.01347 0.005093 0.001728 0.0007011 0.0002354 
4 0.01329 0.005037 0.001709 0.0006942 0.0002332 
5 0.01315 0.004997 0.001697 0.0006894 0.0002316 
6 0.01304 0.004965 0.001687 0.0006858 0.0002304 

100 0 0.009098 0.003450 0.001069 0.0004710 0.0001449 
1 0.009408 0.003541 0.001097 0.0004844 0.0001486 
2 0.009191 0-003465 0.001072 0.0004751 0.0001455 
3 0-009105 0.003436 0.001063 0.0004716 0.0001444 
4 0.009051 0.003419 0.001057 0-0004695 0.0001437 
5 0.009009 0-003407 0.001053 0.0004681 0.0001432 
6 0.008973 0.003397 0.001050 0.0004670 0.0001428 
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FIG. 19. Comparison of present result for fully- 
developed radial temperature profile at constant 
wall heat flux with that of Sparrow- Lin analysis. 

variat ion of first harmonic  results in a greater cor- 
responding temperature  variation. Thus, small 
differences in heat flux distr ibutions result in 
remarkably greater differences of the corresponding 
temperature  distr ibutions as well, while just  the 
opposite is true for temperature  variations with respect 
to corresponding heat flux variations. 
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FIG. 20. Comparison of present results for 
prescribed wall temperature variation with those 

of Sparrow and Lin [2]. 
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In Figs. 19 and 20, present results for prescribed 
wall temperature  are compared to those of Sparrow 
and  Lin [2]. The differences in the solutions for the 
radial temperature  profile at constant  wall temperature  
are due to the slightly different radial distr ibutions 
used for turbulent  velocity and  thermal  eddy diffusivity 
in the radial direction. Figure 20 mainly exhibits the 
effect ofanisotropy of turbulent  energy t ranspor t  on the 
dimensionless temperature  field within the fluid, 

T ~ , . -  T(r, (p) 
- Go-go+g l (p , ~o ) ,  

qo. ro/k 

and the corresponding wai'. heat flux when a 
circumferentially varying wall temperature  is pre- 
scribed. 
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TRANSFERT THERMIQUE TURBULENT DANS UN TUBE CIRCULAIRE AVEC 
DES CONDITIONS AUX LIMITES VARIANT SUR LA C1RCONFERENCE 

R~sumO--Cette analyse ddtermine les caractOristiques d'un Ocoulement turbulent dans un tube circulaire 
avec des conditions aux limites de premiOre et de seconde espOce variables sur la circonfdrence. 

On consid&e un 6coulement dynamiquement et thermiquement 6tabli. Contrairement aux 6tudes 
ant&ieures, on prend en compte l'anisotropie du transport d'6nergie turbulente en s'appuyant sur les 
rdsultats thOoriques de Ramm et Johanserl qui sont en accord satisfaisant avec les rOcents rOsultats 
exp&imentaux. Les rdsultats sur le transfert thermique avec des conditions aux limites constantes ou 
variables sont pr6sent6s pour un ldrge domaine de nombre de Reynolds (10'* ~ Re <~ 10 °) et de nombre 

de Prandtl (0 ~ Pr <-% 100) ~t ils sont compar6s aux relations empiriques. 

TURBULENTE W~RMEI3BERTRAGUNG IN EINEM KREISROHR MIT 
U M F A N G S V A R I A B L E N  THERMISCHEN R A N D B E D I N G U N G E N  

Zusammenfassung--Die W/irmeiibertragungseigenschaften einer turbulenten StriSmung in einem 
Kreisrohr wurden fiir den Fall umfangsvariabler Randbedingungen erster und zweiter Art theoretisch 
untersucht. Die Analyse setzt voll ausgebildete Geschwindigkeits- und Temperaturfelder voraus. Im 
Gegensatz zu friiheren Untersuchungen des gleichen Problems wurde die Anisotropie des turbulenten 
Energietransports berticksichtigt. Die benutzten Verteilungen ftir die richtungsabh/ingigen turbulenten 
Austauschgr6Ben wurden nach einem von Ramm und Johannsen entwickelten Verfahren berechnet; 
die hefriedigende Obereinstimmung der theoretisch ermittelten Verteilungen mit neueren Mel3ergebnissen 
wird nachgewiesen. Ergebnisse for den W~meiibergang bei konstanten und umfangsvariablen 
Randbedingungen werden fiir einen weiten Bereich der Reynolds-Zahl (10'* ~< Re <~ 106) und Prandtl- 

Zahl (0 ~< Pr <~ 100) angegeben und mit Mel3ergebnissen verglichen. 

TYPBY.FIEHTHBIH TEFU10OBMEH B KPYF.)IO[TI TPYBE FIPH TEII£IOBBIX 
F P A H I 4 q H b l X  YCS1OBI/IItX, I43MEHtlIOIlllAXC$t HO OKPY)t(HOCTI4 

AanoTauaa ~ Orlpe~e.a~rOT0t xapaKTep~ICTHK14 TenJTOO6MeHa B Typ6y.rleHTnOM llOTOl~e B l~pyrJlo~q 
TpyOe rtpw FpaHt'lqHblX yCJ/OBFI~IX rlepBoro H BTOpOFO po~la, !43MeHIttOLII.14XCIt 170 oKpy:~nOCTH. Pac- 
CMaTpHBaeTc~t HO.FIHOCTblO pa3BHrOe TeqeHHe 14 TerlJlOO6MeH. B OTJIHqHe OT rlpe2Ibi22ytllnx HCCJIC/10- 
BaHH.q 11artHO.~ rlpoOJTeMbl, B HacTo~tule'~ paOoTe yU~4Tt, lBaeTcn aHvl30Tpom4~ Typ6yYleHTHOrO rlepenoca 
3HepFHH Ha OCHOI3e TeopeTl~qecKnx pe3yJTbTaTOB PaMMa H 7l,~oxaHccna r~o Typ6yJIenTHO~ TeMrlepa- 
TypoIIpOBO/1HOCTI4 B pa3.rn4qHblX HanpaB.~eHH~tx. FloKa3atto, HTO 9TH pe3yJlbTaTb! xopolllO cor;lacy- 
IOTC,q C He/laBHO FIOJlyHeHHblM~I 3KCf/epHMeHTaYlbHblMPI JlaHHblMH. Pe3y£1bTaTbl 170 TerlJ'fOO6MeHy rlpH 
FIOCTOllHHblX H uepeMeHHb~X FpaHHqHblX yCYJOBH.qX [IpeJlCTaBdqeHbl B tLIHpOKOM 2/Harra3oHe 3HaqetlHfI 
uHceJl Pe~Honb2lca ( 1 0 ~  < Re <~ 106) H rlpamlT:m (0 ~ Pr <-% 100) n npoBe2leHo cpaBrteHne c 3MnnpH- 

qecKPIMI4 ZlaHHblM~I. 


